定制高速缓存解决方案是一件非常有趣的事情,它似乎是改善应用程序整体性能的最简单的方式。然而,超高速缓存是一项很大的技术难题,在实践之前需要注意几个事项。 最佳范例1、key/value集合并不是缓存几乎我做过的所有项目都用到了一些定制高速缓存解决方案,这些方案都是使用的java Maps。然而Map并不是缓存的解决方案,因为可能缓存超出了一个key/value的存储容量。缓存还需要满足以下特点: - 驱逐策略(eviction policies)
- 最大容量限制(max size limit)
- 持久性存储(persistent store)
- 弱引用建(weak references keys)
- 统计(statistics)
Java Map并不能提供上述的特点,你也不应该花费你客户的钱去定制缓存方案。你应该选择一个更好的缓存技术,比如 EHCache 或 Guava Cache,这两种缓存技术都是非常强大的,而且用起来也非常的简单。这些工具经常被一些项目用来测试,所以,代码质量相比与其他的定制方案更加优秀。 2、使用一个缓存抽象层spring提供的缓存抽象层是一套非常灵活的方案。@Cacheable注解可以将业务逻辑层的代码从缓存横切关注点分离开来。缓存解决方案是可以通过配置文件进行配置的,所以它不会破坏业务层的方法。 3、谨防缓存的开销每一个api接口都是需要计算成本的,而缓存也不例外。如果你缓存一个web服务或者是一个开销比较大的数据库操作,那么这种开销可以忽略不计。如果在一个递归算法中使用本地缓存,那么就需要考虑缓存解决方案的开销了。甚至Spring的缓存抽象层都是有开销的,所以一定要确保收益大于成本。 4、如果数据库查询操作非常慢,那么缓存可能是最后的解决方案了。当你对ORM生成的SQL语句进行优化之后,你需要再一次检查数据库查询速度是否还是那么慢。同时要确保所有的索引都用上了,这样你的SQL查询才会非常高效。索引必须要全部都放在内存中,不然就会浪费更多的SSD或者HDD硬盘空间了。 你的数据库是可以缓存查询结果的,一定要利用好这个特点。 如果数据集是很大的,并且数据增长的速度也是非常快的,那么你就需要按比例将这些数据分配到多个数据库碎片(shards)中。 如果这样都不能够解决你的问题,那么就考虑换一个更加优秀的缓存解决方案吧,比如Memcached。 5、是否会影响到数据一致性呢?当你在业务层之前使用缓存,数据一致性的约束是非常难做到的。如果缓存不能同步到数据库,那么ACID的特性就会受到影响。如果一个根实体改变了数据,那么将会影响到很大一部分的缓存。如果你抛弃缓存实体,那么所有由缓存带来的效益将会失去。如果你异步更新了缓存实体,就会影响到数据的一致性,最终一致)的数据模型也就不存在了。
|